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Supplementary Figure 1: Statistical enrichment of recurrently mutated NSCLC exons captures known 
drivers. We employed two metrics to prioritize exons with recurrent mutations for inclusion in the CAPP-
Seq NSCLC selector. The first, termed Recurrence Index (RI), is defined as the number of unique 
patients (i.e., tumors) with somatic mutations per kilobase of a given genomic unit (here, exon) and the 
second is defined as the number of unique patients (i.e., tumors) with mutations in a given genomic unit 
(here, exon). We analyzed exons containing at least one non-silent SNV identified by TCGA (n = 
47,769) in a combined cohort of 407 lung adenocarcinoma (LUAD) and squamous cell carcinoma 
(SCC) patients. (a) Known and suspected NSCLC drivers are highly enriched at RI ≥30 (inset), 
comprising 1.8% (n = 861) of analyzed exons. (b) Known and suspected NSCLC drivers are highly 
enriched at ≥3 patients with mutations per exon (inset), encompassing 16% of analyzed exons. 
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Supplementary Figure 2: Fusion discovery in NSCLC cell lines and tumor samples. (a) Base-pair 
resolution breakpoint mapping for all patients and cell lines enumerated by FACTERA. Gene fusions 
involving ALK (top) and ROS1 (bottom) are graphically depicted. Schematics in the left and middle 
panels indicate the exact genomic positions (hg19 NCBI Build 37.1/GRCh37) of the breakpoints in ALK, 
ROS1, EML4, KIF5B, SLC34A2, CD74, MKX, and FYN. Right panels depict exons flanking the 
predicted gene fusions with notation indicating the 5’ fusion partner gene and last fused exon followed 
by the 3’ fusion partner gene and first fused exon. For example, in S13del37;R34 exons 1–13 of 
SLC34A2 (excluding the 3’ 37 nucleotides of exon 13) are fused to exons 34–43 of ROS1. Exons in 
FYN are from its 5’ UTR and precede the first coding exon. The green dotted line in the predicted FYN-
ROS1 fusion indicates the first in-frame methionine in ROS1 exon 33, which preserves an open reading 
frame encoding the ROS1 kinase domain. All rearrangements were each independently confirmed by 
PCR, FISH, and/or Sanger-sequencing. (b) Presence of fusions is inversely related to the number of 
SNVs detected by CAPP-Seq. For each patient listed in Table 1 the number of identified SNVs versus 
the presence (n = 11) or absence (n = 6) of detected genomic fusions is plotted. Statistical significance 
was determined using a two-sided Wilcoxon rank sum test, and summarized values are presented as 
means ± s.e.m. 
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Supplementary Figure 3: Improvements in CAPP-Seq performance with optimized library preparation 
procedures. (a–c) Using 32 ng of nput circulating DNA from plasma, we compared standard versus 

j  KAPA With-Bead 32ng KAPA With-Bead 4ng  KAPA With-Bead 128ng
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‘with bead’5 library preparation methods, as well as two commercially available DNA polymerases 
(Phusion and KAPA HiFi). We also compared template pre-amplification by Whole Genome 
Amplification (WGA) using Degenerate Oligonucleotide PCR (DOP). Indices considered for these 
comparisons included (a) length of the captured circulating DNA fragments sequenced, (b) depth and 
uniformity of sequencing coverage across all genomic regions in the selector, and (c) sequence 
mapping and capture statistics, including uniqueness. Collectively, these comparisons identified KAPA 
HiFi polymerase and a “with bead” protocol as having most robust and uniform performance. (d–i) 
Optimizing allele recovery from low input circulating DNA during Illumina library preparation. Bars 
reflect the relative yield of CAPP-Seq libraries constructed from 4 ng circulating DNA, calculated by 
averaging quantitative PCR measurements of n = 4 pre-selected reporters within CAPP-Seq with pre-
defined amplification efficiencies. (d) Sixteen hour ligation at 16 ºC increases ligation efficiency and 
reporter recovery. (e) Adapter ligation volume did not have a significant effect on ligation efficiency and 
reporter recovery. (f) Performing enzymatic reactions “with-bead” to minimize tube transfer steps 
increases reporter recovery. (g) Increasing adapter concentration during ligation increases ligation 
efficiency and reporter recovery. Reporter recovery is also higher when using KAPA HiFi DNA 
polymerase compared to Phusion DNA polymerase (h) and when using the KAPA Library Preparation 
Kit with the modifications in d – g compared to the NuGEN SP Ovation Ultralow Library System with 
automation on a Mondrian SP Workstation (i). Relative reporter abundance was determined by qPCR 
using the 2-∆Ct method. A two-sided t test with equal variance was used to test the statistical 
significance between groups. All values are presented as means ± s.d. N.S., not significant. Based on 
these results, we estimate that combining the methodological modifications in d and f – h improves 
yield in NGS libraries by 3.3-fold. (j–l) CAPP-Seq performance with various amounts of input circulating 
DNA. (j) Length of the captured circulating DNA fragments sequenced. (k) Depth of sequencing 
coverage across all genomic regions in the selector (pre-duplicate removal). (l) Sequence mapping and 
capture statistics. As expected, more input circulating DNA mass correlates with more unique 
fragments sequenced. 
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Supplementary Figure 4: Library complexity, molecule recovery, and technical assessment of CAPP-
Seq. (a) The expected proportion of additional library complexity present in post-duplicate reads is 
plotted for all patient and control samples, including plasma DNA (n = 40) and paired tumor/PBL 
specimens (n = 17 each). Because of the highly stereotyped size of circulating DNA fragments 
occurring naturally in blood plasma, when compared with genomic DNA shorn by sonication, any two 
fragments of DNA circulating in plasma are inherently more likely by chance to have arisen from 
different original molecules, whether considering tumor or non-tumor cells as the source of this 
circulating DNA. To estimate this “missing” complexity, we reasoned that two DNA fragments (i.e., 
paired end reads) with identical start/end coordinates that differ by a single a priori defined germline 
variant (i.e., one maternal and one paternal allele) represent two unique and independent starting 
molecules rather than technical artifacts (i.e., PCR duplicates). Therefore, the number of fragments 
sharing identical start/end coordinates with both maternal and paternal germline alleles of heterozygous 
SNPs were used to estimate additional library complexity. Library complexity estimates updated to 
factor in these data are also provided in Supplementary Table 2 and determined as described in 
Supplementary Methods (section B3.1). (b) Empirical assessment of molecule recovery in circulating 
plasma DNA (n = 40) by determination of the mass of DNA produced compared to the expected library 
yield based on mass input, number of PCR cycles, and efficiency (mean = 46%). See Supplementary 
Methods for details (section B3.3). (a,b) Values are presented as means ± 95% confidence intervals. 
(c) Analysis of library cross-contamination. Allelic fractions of patient-specific homozygous germline 
SNPs were assessed in circulating DNA samples multiplexed on the same lane. SNPs were called as 
described in Supplementary Methods (section B1.5). The mean “cross-contamination” rate in 
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circulating DNA samples was 0.06%, shown by the horizontal dotted line. This level of contamination is 
too low to affect our estimates of tumor burden given the low fraction of tumor-derived circulating DNA 
in plasma of NSCLC patients (median of ~0.1%; Fig. 5a) (i.e., 0.06 × 0.1 = 0.006% of a given sample 
would on average represent contamination from ctDNA of another sample). Of note, to minimize the 
risk of inter-sample contamination, we use aerosol barrier tips, work in hoods, and do not multiplex 
tumor and plasma libraries in the same lane. (d) Analysis of selector-wide bias in captured sequence. 
Because the NSCLC selector was designed to target the hg19 reference genome, we reasoned that 
selector bias for SNVs, if any, should be discernable as a systematically lower ratio of non-reference to 
reference alleles in heterozygous germline SNPs. Therefore, we analyzed high confidence SNPs in 
patient PBL samples, where high confidence was defined as variants with a non-reference fraction 
>10% present in the common SNPs subset of dbSNP (version 137.0). As shown, we detected a very 
small skew toward reference (8 of 11 samples have a median non-reference allelic frequency of 49%; 
the remaining 3 samples are unbiased). Importantly, such bias appears too small to significantly affect 
our results. Boxes represent the interquartile range, and whiskers encapsulate the 10th to 90th 
percentiles. Germline SNPs were identified using VarScan 2, as described in Supplementary Methods 
(section B1.6). 
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Supplementary Figure 5: Empirical spiking analysis of CAPP-Seq using two NSCLC cell lines. (a) 
Expected and observed (by CAPP-Seq) fractions of NCI-H3122 DNA spiked into control HCC78 DNA 
are linear for all fractions tested (0.1%, 1%, and 10%; R2 = 1). (b) Using data from a, analysis of the 
effect of the number of SNVs considered on the estimates of fractional abundance (95% confidence 
intervals shown in gray). (c) Analysis of the effect of the number of SNVs considered on the mean 
correlation coefficient and coefficient of variation between expected and observed cancer fractions 
(blue dashed line) using data from panel a. (d) Expected and observed fractions of the EML4-ALK 
fusion present in HCC78 are linear (R2 = 0.995) over all spiking concentrations tested (see 
Supplementary Fig. 2a for breakpoints). The observed EML4-ALK fractions were normalized based on 
the relative abundance of the fusion in 100% H3122 DNA (see Supplementary Methods for details). 
Moreover, both a single heterozygous insertion (‘Indel’; chr7: 107416855, +T) and a 4.9 kb 
homozygous deletion (‘Deletion’, chr17: 29422259–29592392) in NCI-H3122 were concordant with 
defined concentrations. Values in a are presented as means ± s.e.m. 
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Supplementary Figure 6: Extended CAPP-Seq sensitivity and specificity analysis. (a-d) Receiver 
Operating Curve (ROC) analysis, comparing sensitivity and specificity achieved for (i) non-deduped 
(panels a and c) versus deduped (post PCR duplicate removal) data (panels b and d), (ii) all disease 
stages (panels a and b) versus intermediate to advanced disease stages (stages II-IV, panels c and d), 
and (iii) with or without the indel/fusion filter (described in Supplementary Methods). Reporter 
fractions for both non-deduped and deduped circulating DNA samples are provided in Supplementary 
Table 4. (e) CAPP-Seq sensitivity and specificity over all patient reporters and sequenced plasma DNA 
samples. All values shown reflect a ctDNA detection index of 0.03. See Online Methods and 
Supplementary Methods for details on detection metrics, and determination of cancer-positive, 
cancer-negative, and unknown categories.   
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Supplementary Figure 7: Biopsy-free cancer screening with CAPP-Seq. (a) Steps to identify 
candidate SNVs in plasma DNA demonstrated using a patient sample with NSCLC (P6, see 
Supplementary Table 3). Following stepwise filtration, outlier detection is applied (Supplementary 
Methods). (b) Screening method applied to a cancer-positive pre-treatment sample (patient P6). (c) 
Same as b, but using a post-treatment sample from a patient who had their tumor surgically removed. 
No SNVs are identified, as expected. (d) Two additional representative samples applying retrospective 
screening to patients analyzed in this study. P5 has confirmed tumor-derived SNVs, while P9 is cancer 
positive but lacks tumor-derived SNVs. Red points, confirmed tumor-derived SNVs; Turquoise points, 
background. 
	  
  

0 10 20 30
0

1

2

3

4

0.6

0.7

0.8

0.9

1.0

Robust Mahalanobis distance

Sq
ua

re
 ro

ot
 o

f q
ua

nt
ile

s 
of

 c
hi

-s
qu

ar
e

Iterative correlation

0 20 40 60 80 100
0

100

200

300

400

No. tags (deduped)

N
o.

 ta
gs

 (n
on

de
du

pe
d)

0 20 40 60 80 100
0

100

200

300

400

No. tags (deduped)

N
o.

 ta
gs

 (n
on

de
du

pe
d)

0 20 40 60 80 100
0

100

200

300

400

No. tags (deduped)

N
o.

 ta
gs

 (n
on

de
du

pe
d)

0 20 40 60 80 100
0

100

200

300

400

No. tags (deduped)

N
o.

 ta
gs

 (n
on

de
du

pe
d)

0 20 40 60 80 100
0

100

200

300

400

No. tags (deduped)

N
o.

 ta
gs

 (n
on

de
du

pe
d)

0 2 4 6
0

1

2

3

4

0.6

0.7

0.8

0.9

1.0

Robust Mahalanobis distance

Sq
ua

re
 ro

ot
 o

f q
ua

nt
ile

s 
of

 c
hi

-s
qu

ar
e

Iterative correlation

����*HUPOLQH�ÀOWHU ����2XWOLHU�GHWHFWLRQ����3UH�ÀOWHU

&XWSRLQW��5KR�������

&DQFHU�SODVPD�'1A (P6)

3RVW�2S�SODVPD�'1A (P1)

.QRZQ�619

%DFNJURXQG�DOOHOH

0 20 40 60 80 100
0

100

200

300

400

No. tags (deduped)

N
o.

 ta
gs

 (n
on

de
du

pe
d)

����%DFNJURXQG�ÀOWHU

0 10 20 30 40
0

1

2

3

4

0.6

0.7

0.8

0.9

1.0

Robust Mahalanobis distance

Sq
ua

re
 ro

ot
 o

f q
ua

nt
ile

s 
of

 c
hi

-s
qu

ar
e

Iterative correlation

C
RrrelaWiRQ FRHfÀFienW

d 3�

0 2 4
0

1

2

3

4

0.0

0.2

0.4

0.6

0.8

1.0

Robust Mahalanobis distance

Sq
ua

re
 ro

ot
 o

f q
ua

nt
ile

s 
of

 c
hi

-s
qu

ar
e

Iterative correlation

C
RrrelaWiRQ FRHfÀFienW

P9

a

b

c



 
 

11 

 
 
Supplementary Figure 8: Relative cost of CAPP-Seq compared to other methods. Estimates are 
based on achieving the same theoretical detection limit as CAPP-Seq (shown as a red curve in Fig. 
1d). All data relate to Fig. 1d. Calculations are detailed in Online Methods. 
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Supplementary Methods 
 
A. Molecular Biology Methods 
 
A1. Cell Lines 
The lung adenocarcinoma cell lines NCI-H3122 and HCC78 were obtained from ATCC and DSMZ, 
respectively, and grown in RPMI 1640 with L-glutamine (Gibco) supplemented with 10% fetal bovine 
serum (Gembio) and 1% penicillin/streptomycin cocktail. Cells were maintained in mid-log-phase 
growth in a 37 ºC incubator with 5% CO2. Genomic DNA was purified from freshly harvested cells with 
the DNeasy Blood & Tissue Kit (Qiagen). 
 
A2. Pleural Fluid Processing and Flow Cytometry, and Cell Sorting 
Cells from pleural fluid from patients P9 and P6 were harvested by centrifugation at 300 × g for 5 min at 
4 ºC and washed in FACS staining buffer (HBSS + 2% heat-inactivated calf serum [HICS]). Red blood 
cells were lysed with ACK Lysing Buffer (Invitrogen), and clumps were removed by passing through a 
100 µm nylon filter. Filtered cells were spun down and resuspended in staining buffer. While on ice, the 
cell suspension was blocked for 20 min with 10 µg mL-1 rat IgG and then stained for 20 min with APC-
conjugated mouse anti-human EpCAM (BioLegend, clone 9C4), PerCP-Cy5.5-conjugated mouse anti-
human CD45 (eBioscience, clone 2D1), and PerCP-eFluor710-conjugated mouse anti-human CD31 
(eBioscience, clone WM59). After staining, cells were washed and resuspended with staining buffer 
containing 1 µg mL-1 DAPI, analyzed, and sorted with a FACSAria II cell sorter (BD Biosciences). Cell 
doublets and DAPI-positive cells were excluded from analysis and sorting. CD31–CD45–EpCAM+ cells 
were sorted into staining buffer, spun down, and flash frozen in liquid nitrogen. DNA was isolated with 
the QIAamp DNA Micro Kit (Qiagen). 
 
A3. Optimization of NGS Library Preparation from Low Input Circulating DNA 
Protocols for Illumina library construction were compared in a step-wise manner with the goal of (1) 
optimizing adapter ligation efficiency, (2) reducing the necessary number of PCR cycles following 
adapter ligation, (3) preserving the naturally occurring size distribution of circulating DNA fragments, 
and (4) minimizing variability in depth of sequencing coverage across all captured genomic regions. 
Initial optimization was done with NEBNext DNA Library Prep Reagent Set for Illumina (New England 
BioLabs), which includes reagents for end-repair of the circulating DNA fragments, A-tailing, adapter 
ligation, and amplification of ligated fragments with Phusion High-Fidelity PCR Master Mix. Input was 4 
ng circulating DNA (obtained from plasma of the same healthy volunteer) for all conditions. Relative 
allelic abundance in the constructed libraries was assessed by qPCR of 4 genomic loci (Roche 
NimbleGen: NSC-0237, NSC-0247, NSC-0268, and NSC-0272) and compared by the 2-∆Ct method.  
 Ligations were performed at 20 ºC for 15 min (as per the manufacturer’s protocol), at 16 ºC for 
16 h, or with temperature cycling for 16 h as previously described2. Ligation volumes were varied from 
the standard (50 µL) down to 10 µL while maintaining a constant concentration of DNA ligase, 
circulating DNA fragments, and Illumina adapters. Subsequent optimizations incorporated ligation at 16 
ºC for 16 h in 50 µL reaction volumes.  
 Next, we compared standard SPRI bead processing procedures, in which new AMPure XP 
beads are added after each enzymatic reaction and DNA is eluted from the beads for the next reaction, 
to with-bead protocol modifications as previously described3. We compared 2 concentrations of Illumina 
adapters in the ligation reaction: 12 nM (10-fold molar excess to circulating DNA fragments) and 120 
nM (100-fold molar excess).  
 Using the optimized library preparation procedures, we next compared the NEBNext DNA 
Library Prep Reagent Set (with Phusion DNA Polymerase) to the KAPA Library Preparation Kit (with 
KAPA HiFi DNA Polymerase). The KAPA Library Preparation Kit with our modifications was also 
compared to the NuGEN SP Ovation Ultralow Library System with automation on Mondrian SP 
Workstation.  
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A4. Evaluation of Library Preparation Modifications on CAPP-Seq Performance 
We performed CAPP-Seq on 32 ng circulating DNA using standard library preparation procedures with 
the NEBNext kit, or with optimized procedures using either the NEBNext kit or the KAPA Library 
Preparation Kit. In parallel we performed CAPP-Seq on 4 ng and 128 ng circulating DNA using the 
KAPA kit with our optimized procedures. Indexed libraries were constructed, and hybrid selection was 
performed in multiplex. The post-capture multiplexed libraries were amplified with Illumina backbone 
primers for 14 cycles of PCR and then sequenced on a paired-end 100 bp lane of an Illumina HiSeq 
2000. 
 We also evaluated CAPP-Seq on ultralow input following whole genome amplification (WGA). 
We used SeqPlex DNA Amplification Kit (Sigma-Aldrich), which employs degenerate oligonucleotide 
primer PCR. Briefly, 1 ng circulating DNA was amplified with real-time monitoring with SYBR Green I 
(Sigma-Aldrich) on a HT7900 Real Time PCR machine (Applied Biosystems). Amplification was 
terminated after 17 cycles yielding 2.8 µg DNA. The primer removal step yielded ~600 ng DNA, and this 
entire amount was used for library preparation using the NEBNext kit with optimized procedures as 
described above. 
 
A5. Validation of Variants Detected by CAPP-Seq 
All structural rearrangements and a subset of tumoral SNVs detected by CAPP-Seq were 
independently confirmed by qPCR and/or Sanger sequencing of amplified fragments. For HCC78, a 
120 bp fragment containing the SLC34A2-ROS1 breakpoint was amplified from genomic DNA using the 
primers: 5’-AGACGGGAGAAAATAGCACC-3’ and 5’-ACCAAGGGTTGCAGAAATCC-3’. For NCI-
H3122, a 143 bp fragment containing the EML4-ALK breakpoint was amplified using the primers: 5’-
GAGATGGAGTTTCACTCTTGTTGC-3’ and 5’-GAACCTTTCCATCATACTTAGAAATAC-3’. 5ng 
genomic DNA was used as template with 250 nM oligos and 1X Phusion PCR Master Mix (NEB) in 50 
µL reactions. Products were resolved on 2.5% agarose gel and bands of the expected size were 
removed. The amplified DNA fragments were purified using the Qiaquick Gel Extraction Kit (Qiagen) 
and submitted for Sanger sequencing (Elim Biopharm). For P9, genomic DNA breakpoints were 
confirmed by qPCR using the primers: 5’-TCCATGGAAGCCAGAAC-3’ and 5’-
ATGCTAAGATGTGTCTGTCA-3’ for EML4-ALK; 5’-CCTTAACACAGATGGCTCTTGATGC-3’ and 5’-
TCCTCTTTCCACCTTGGCTTTCC-3’ for ROS1-MKX; and 5’-GGTTCAGAACTACCAATAACAAG-3’ 
and 5’-ACCTGATGTGTGACCTGATTGATG-3’ for FYN-ROS1. For qPCR, 10 ng of pre-amplified 
genomic DNA was used as template with 250 nM oligos and 1X Power SyberGreen Master Mix in 10µL 
reactions performed in triplicate on a HT7900 Real Time PCR machine (Applied Biosystems). Standard 
PCR thermal cycling parameters were used. Amplification of amplicons spanning all 3 breakpoints 
detected in P9 were confirmed in tumor genomic DNA as well as plasma circulating DNA, and PBL 
genomic DNA was used as a negative control.  
 CAPP-Seq confirmed somatic tumor mutations (SNVs and rearrangements) that were detected 
by clinical assays as a part of standard clinical care (Supplementary Table 3). Clinical mutation 
assays were performed on formalin-fixed paraffin-embedded tissues. SNVs were detected by the 
SNaPshot assay4. Rearrangements were detected by fluorescence in situ hybridization (FISH) using 
separation probes targeting the ALK locus (Abbott) or ROS1 locus (Cytocell).  
 
B. Bioinformatics and Statistical Methods 
 
B1. CAPP-Seq Detection Threshold Metrics 
 
B1.1. Selector base-level background 
We assessed the base-level background distribution of the NSCLC selector (Fig. 2d) using all 40 
plasma DNA samples collected from NSCLC and healthy individuals analyzed in this work 
(Supplementary Table 2). For each background base in selector positions having ≥500x overall 
sequencing depth, the outlier-corrected mean across all circulating DNA samples was calculated. 
Although we tested dedicated outlier detection methods, such as iterative Grubbs’ method and ROUT5, 
our empirical analyses indicated that simple removal of the minimum and maximum values worked 
best. Importantly, to restrict our analysis to background bases, each patient sample was pre-filtered to 
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remove germline, loss of heterozygosity (LOH), and/or somatic variant calls made by VarScan 26 
(somatic p-value = 0.01; otherwise, default parameters).   
 
B1.2. Significance of SNVs as reporters  
To evaluate the significance of tumor-derived SNVs in plasma, we implemented a strategy that 
integrates circulating DNA fractions across all somatic SNVs, performs a position-specific background 
adjustment, and evaluates statistical significance by Monte Carlo sampling of background alleles 
across the selector. We note that this approach differs fundamentally from previous methods, where 
mutations are interrogated individually. Unlike these methods, our strategy dampens the impact of 
stochastic noise and biological variables (e.g., mutations near the detection limit, or tumor evolution) on 
tumor burden quantitation, permitting a more robust statistical assessment. In particular, this allows 
CAPP-Seq to quantitate low levels of ctDNA with potentially high rates of allelic drop out. 

For a given plasma DNA sample θ, we begin by adjusting the allelic fraction f for each of n 
SNVs from patient Ρ in order to minimize the influence of selector technical/biological background on 
significance estimates. Specifically, for each allele, we perform the following simple operation, f* = 
max{0, f – (e – µ)}, where f is the raw allelic fraction in plasma DNA, e is the position-specific error rate 
for the given allele across all circulating DNA samples (see section B1.1 above), and µ denotes the 
mean selector-wide background rate (=0.006% in this study, see section B1.1 and Fig. 2d). In effect, 
this adjustment nudges the mean of all n SNVs closer to the global selector mean µ, mitigating the 
confounding impact of technical/biological background. Using Monte Carlo simulation, we compare the 
adjusted mean SNV fraction F* (=( 𝑓∗)/n) against the null distribution of background alleles across the 
selector. Specifically, for each of i iterations (=10,000 in this work), n background alleles are randomly 
sampled from θ, after which their fractions are adjusted using the above formula and averaged. A SNV 
p-value for patient Ρ is determined as the percentile of F* with respect to the null distribution of 
background alleles in θ. Thus, a panel of SNVs from patient Ρ would be assigned a detection p-value of 
0.04 if F* ranks in the 96th percentile of adjusted background alleles in θ. We note that background 
adjustment always improved CAPP-Seq specificity in our ROC analyses (data not shown). 
 
B1.3. Significance of indels as reporters 
We implemented an approach based on population statistics to assess the significance of indels 
separately from SNVs. For each indel in patient Ρ, we use the Z-test to compare its fraction in a given 
plasma DNA sample θ against its fraction in every plasma DNA sample in our cohort (excluding 
circulating DNA samples from the same patient Ρ). To increase statistical robustness, each read strand 
(positive or negative orientation) is assessed separately, yielding two Z-scores for each indel. These 
are combined into a single Z-score by Stouffer’s method8, an unweighted approach for integrative Z 
statistics. Finally, if patient Ρ has more than 1 indel, all indel-specific Z-scores are combined by 
Stouffer’s method into a final Z statistic, which is trivially converted to a p-value. 
 
B1.4. Significance of fusions as reporters 
Given the exceedingly low false positive rate associated with the detection of the same NSCLC fusion 
breakpoint in independent libraries, the recovery of a tumor-derived genomic fusion in plasma DNA by 
CAPP-Seq was (arbitrarily) assigned a p-value of ~0. 
 
B1.5. Indel/fusion correction for sensitivity and specificity assessment 
Related to Figure 3, after calculating a ctDNA detection index for every set of reporters across all 
plasma DNA samples using the methods described above, we applied an additional step to increase 
specificity. Namely, to exploit the lower technical background of indels and fusion breakpoints as 
compared to SNVs, we applied an “indel/fusion correction”. Specifically, if indel/fusion reporters found 
in patient X’s tumor could be uniquely detected in patient X’s plasma DNA (i.e., not detected in any 
other patient or control plasma DNA sample), then the ctDNA detection index corresponding to patient 
X was set to 1 (i.e., ctDNA not detectable) in every unmatched plasma DNA sample. In other words, 
patient X’s reporters would not be called a false positive in another patient. Although we have not yet 
encountered two patients with the same indel/fusion reporter(s), if this was the case, the correction 
would not be applied from one patient to the other. 
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To perform this correction in a blinded manner, as shown for Figure 3 (panels a and b), we 
identified germline SNPs in each plasma DNA and PBL sample, and assigned each circulating DNA 
sample to the tumor/normal pair with highest SNP concordance (after un-blinding, all plasma DNA 
samples were found to be correctly matched to their corresponding tumor/normal pairs). As shown in 
Supplementary Figure 14, this correction consistently increased CAPP-Seq specificity. Germline 
SNPs were identified using VarScan 26, with a p-value threshold of 0.01, minimum sequence coverage 
of 100x, a minimum average quality score of 30 (Phred), and otherwise default parameters.  
 
B2. Sensitivity and Specificity Analysis 
We tested CAPP-Seq performance in a blinded fashion by masking all patient identifying information, 
including disease stage, circulating DNA time point, treatment, etc.  We then tested our detection 
metrics described above (section B1) for correctly calling tumor burden across the entire grid of de-
identified plasma DNA samples (13 patient-specific sets of somatic reporters across 40 plasma 
samples, or 520 pairs). To calculate sensitivity and specificity, we “un-blinded” ourselves and grouped 
patient samples into cancer-positive (i.e. cancer was present in the patient’s body), cancer-negative 
(i.e. patient was cured), or cancer-unknown (i.e. insufficient data to determine true classification) 
categories. We considered every time point of patients with radiographic evidence of recurrence and all 
stage IV patients as cancer-positive, regardless of clinical evaluation at the time point in question. The 
post-treatment time point of patient 13 (P13; stage IIB NSCLC) was considered cancer-unknown due to 
“No Evidence of Disease (NED)” status at last follow-up, nearly 2 years from their treatment (Fig. 4e). 
Patient 2 (P2; stage IIIB NSCLC), was classified as NED following complete surgical resections, and 
was also considered cancer-unknown. All post-treatment stage I NSCLC patient samples were 
conservatively considered “cancer unknown” rather than true negatives due to limited follow-up.  
 
B3. Analysis of Library Complexity 
 
B3.1. Library complexity estimation 
We estimated the number of haploid genome equivalents per library using 330 genome equivalents per 
1 ng of input DNA (Supplementary Table 2), and calculated overall ‘molecule recovery’ as the median 
depth after duplicate removal (see section B3.2) divided by the smaller of (i) the median depth before 
duplicate removal and (ii) the estimated number of haploid genome equivalents. Molecule recovery at a 
given sequencing depth was estimated to be 38% for circulating plasma DNA, 37% for tumor DNA, and 
48% for PBLs (highest DNA input mass among all samples).  

In contrast to genomic DNA, plasma DNA is naturally fragmented and has a highly stereotyped 
size distribution related to nucleosome spacing9, with a median length of ~170bp and very low 
dispersion (Fig. 2a, Supplemenary Table 2). As such, we hypothesized that independent input 
molecules with identical start/end coordinates may inflate the duplication rate of circulating DNA, 
leading to an underestimated molecule recovery rate.  

We tested this hypothesis by analyzing heterozygous germline SNPs, reasoning that DNA 
fragments (i.e., paired end reads) with identical start/end coordinates and differing by a single a priori 
defined germline variant are more likely to represent independent starting molecules than technical 
artifacts (i.e., PCR duplicates). Heterozygous SNPs were identified in all 90 samples (Supplementary 
Table 2) using VarScan 26 (same as described in section B1.5), and filtered for variants with an allele 
frequency between 40% and 60% that are present in the Common SNPs subset of dbSNP (version 
137.0). For each heterozygous common SNP, A/B, we counted all fragments with unique start/end 
coordinates that support A, B, or AB. Among molecules with a given A/B SNP, there is a 50% chance of 
getting A and B together when randomly sampling two molecules (AB or BA), and there is a combined 
50% chance of getting either AA or BB. Since the number of unique start/end positions for AB (denoted 
N) represents at least twice as many molecules (≥2N), and a combined ≥2N molecules can be 
assumed missing from unique start/end coordinates that support A or B, a lower bound on total missing 
library complexity is determined by the formula, 3N/S, where S denotes the sum of unique start/end 
coordinates covering A, B, and AB. Across SNPs in each input sample, we calculated an average of 
30% missing library complexity in circulating DNA samples, and 4% and 6% missing library complexity 
in tumor and PBL genomic DNA, respectively (Supplementary Fig. 4a). Molecule recovery rates 
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adjusted for estimated loss of complexity are provided in Supplementary Table 2, and indicate a mean 
molecule recovery of at least 49% in circulating plasma DNA, 37% in tumor genomic DNA (mostly 
FFPE) and 51% in PBL genomic DNA.  
 
B3.2. Duplication rate 
Common deduping tools, such as SAMtools7 rmdup and Picard tools MarkDuplicates 
(http://picard.sourceforge.net), identify and/or collapse reads based on sequence coordinates and 
quality, not sequence composition. This can result in the removal of tumor-derived reads (representing 
distinct molecules) that happen to share sequence coordinates with germline reads. This is particularly 
problematic for circulating DNA since for a large fraction of molecules there are other unique molecules 
with the same start and end (see above, section B3.1). To address this issue, we developed a custom 
Perl script that ignores bases with low quality (here, Phred Q<30), and collapses only those fragments 
(read pairs) with 100% sequence identity that also share genomic coordinates. The resulting post-
duplicate reads are provided alongside corresponding non-deduped data in Supplementary Tables 2 
and 4, which respectively cover sequencing statistics and plasma DNA monitoring results.  
 
B3.3. Library complexity measured via PCR and mass input 
As a separate estimation of library complexity, for each Illumina NGS library constructed from 
circulating DNA, we calculated the fraction of expected library yield from the actual yield and the 
expected (ideal) yield (Supplementary Fig. 4b). The actual library yield was determined from the 
molarity and volume of the constructed libraries (prior to hybrid selection). The expected library yield 
was calculated from the mass of circulating plasma DNA used for library preparation and the number of 
PCR cycles performed, with the assumption that ligation was 100% efficient and PCR was 95% efficient 
at each cycle. A PCR efficiency of 95% was observed from qPCR performed on serial dilutions of 
Illumina TruSeq libraries (mean R2>0.999 from 4 independent experiments).  
 
B4. CAPP-Seq Selector Design 
Most human cancers are relatively heterogeneous for somatic mutations in individual genes. 
Specifically, in most human tumors, recurrent somatic alterations of single genes account for a minority 
of patients, and only a minority of tumor types can be defined using a small number of recurrent 
mutations (<5-10) at predefined positions. Therefore, the design of the selector is vital to the CAPP-Seq 
method because (1) it dictates which mutations can be detected with high probability for a patient with a 
given cancer, and (2) the selector size (in kb) directly impacts the cost and depth of sequence 
coverage. For example, the hybrid selection libraries available in current whole exome capture kits 
range from 51-71 Mb, providing ~40-60 fold maximum theoretical enrichment versus whole genome 
sequencing. The degree of potential enrichment is inversely proportional to the selector size such that 
for a ~100 kb selector, >10,000 fold enrichment should be achievable. 
 
We employed a six-phase design strategy to identify and prioritize genomic regions for the CAPP-Seq 
NSCLC selector as detailed below. Three phases were used to incorporate known and suspected 
NSCLC driver genes, as well as genomic regions known to participate in clinically actionable fusions 
(phases 1, 5, 6), while another three phases employed an algorithmic approach to maximize both the 
number of patients covered and SNVs per patient (phases 2–4). The latter relied upon a metric that we 
termed “Recurrence Index” (RI), defined as the number of NSCLC patients with SNVs that occur within 
a given kilobase of exonic sequence (i.e., No. of patients with mutations / exon length in kb). RI thus 
serves to measure patient-level recurrence frequency at the exon level, while simultaneously 
normalizing for gene or exon size. As a source of somatic mutation data uniformly genotyped across a 
large cohort of patients, in phases 2–4, we analyzed non-silent SNVs identified in TCGA whole exome 
sequencing data from 178 patients in the Lung Squamous Cell Carcinoma dataset (SCC)10 and from 
229 patients in the Lung Adenocarcinoma (LUAD) datasets (TCGA query date was March 13, 2012). 
Thresholds for each metric (i.e. RI and patients per exon) were selected to statistically enrich for 
known/suspected drivers in SCC and LUAD data (Supplementary Fig. 1). RefSeq exon coordinates 
(hg19) were obtained via the UCSC Table Browser (query date was April 11, 2012). 
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The following algorithm was used to design the CAPP-Seq selector (parenthetical descriptions 
match design phases noted in Fig. 1b).  
 
• Phase 1 (Known drivers) 

Initial seed genes were chosen based on their frequency of mutation in NSCLCs. Analysis of 
COSMIC (v57)11 identified known driver genes that are recurrently mutated in ≥9% of NSCLC 
(denominator ≥500 cases). Specific exons from these genes were selected based on the pattern 
of SNVs previously identified in NSCLC. The seed list also included single exons from genes 
with recurrent mutations that occurred at low frequency but had strong evidence for being driver 
mutations, such as BRAF exon 15, which harbors V600E mutations in <2% of NSCLC12-21. 

• Phase 2 (Max. coverage) 
For each exon with SNVs covering ≥5 patients in LUAD and SCC, we selected the exon with 
highest RI that identified at least 1 new patient when compared to the prior phase. Among 
exons with equally high RI, we added the exon with minimum overlap among patients already 
captured by the selector. This was repeated until no further exons met these criteria.  

• Phase 3 (RI ≥ 30) 
For each remaining exon with an RI ≥ 30 and with SNVs covering ≥3 patients in LUAD and 
SCC, we identified the exon that would result in the largest reduction in patients with only 1 
SNV. To break ties among equally best exons, the exon with highest RI was chosen. This was 
repeated until no additional exons satisfied these criteria. 

• Phase 4 (RI ≥ 20) 
Same procedure as phase 3, but using RI ≥ 20. 

• Phase 5 (Predicted drivers) 
We included all exons from additional genes previously predicted to harbor driver mutations in 
NSCLC12,13.  

• Phase 6 (Add fusions) 
For recurrent rearrangements in NSCLC involving the receptor tyrosine kinases ALK, ROS1, 
and RET, the introns most frequently implicated in the fusion event and the flanking exons were 
included. 

 
All exons included in the selector, along with their corresponding HUGO gene symbols and 

genomic coordinates, as well as patient statistics for NSCLC and a variety of other cancers, are 
provided in Supplementary Table 1, organized by selector design phase. 
 
C. CAPP-Seq Computational Pipeline 
 
C1. Mutation Discovery: SNVs/indels 
For detection of somatic SNV and insertion/deletion events, we employed VarScan 26 (somatic p-value 
= 0.01, minimum variant frequency = 5%, strand filter = true, and otherwise default parameters). 
Somatic variant calls (SNV or indel) present at less than 0.5% mutant allelic frequency in the paired 
normal sample (PBLs), but in a position with at least 1000x overall depth in PBLs and 100x depth in the 
tumor, and with at least 1x read depth on each strand, were retained (Supplementary Table 3). While 
the selector was designed to predominantly capture exons, in practice, it also captures limited 
sequence content flanking each targeted region. For instance, this phenomenon is the basis for the 
(thus far) uniformly successful recovery by CAPP-Seq of fusion partners (which are not included within 
the selector) for kinase genes such as ALK and ROS1 recurrently rearranged in NSCLC. As such, we 
also considered variant calls detected within 500bps of defined selector coordinates. These calls were 
eliminated if present in non-coding repeat regions, since repeats may confound mapping accuracy. 
Repeat sequence coordinates were obtained using the RepeatMasker track in the UCSC table browser 
(hg19). Given a low, but measurable cross-contamination rate of ~0.06% in multiplexed circulating DNA 
samples, (Supplementary Fig. 4c) we also excluded any SNVs found as germline SNPs in samples 
from the same lane. Additionally, we excluded SNVs in the top 99.9th percentile of global selector 
background (>0.27% sample-wide background rate; see Fig. 2d and section B1.1 above). Finally, we 
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excluded any SNVs not present at a depth of at least 500x in at least 1 circulating DNA sample. Variant 
annotation was automatically downloaded from the SeattleSeq Annotation 137 web server 
(http://snp.gs.washington.edu/SeattleSeqAnnotation137/). Complete details for all identified SNVs and 
indels are provided in Supplementary Table 3. Of note, all depth thresholds refer to pre-duplication 
removal reads (see section B3.2). 
 
C2. Mutation Discovery: Fusions  
For practical and robust de novo enumeration of genomic fusion events and breakpoints from paired-
end next-generation sequencing data, we developed a novel heuristic approach, termed FACTERA 
(FACile Translocation Enumeration and Recovery Algorithm). FACTERA has minimal external 
dependencies, works directly on a preexisting .bam alignment file, and produces easily interpretable 
output. Additional aspects of the method will be described in a forthcoming manuscript (Newman et al., 
in preparation). FACTERA is coded in Perl and freely available from the authors upon request. 

As input, FACTERA requires a .bam alignment file of paired-end reads produced by BWA22, 
exon coordinates in .bed format (e.g., hg19 RefSeq coordinates), and a .2bit reference genome to 
enable fast sequence retrieval (e.g., hg19). In addition, the analysis can be optionally restricted to reads 
that overlap particular genomic regions (.bed file), such as the CAPP-Seq selector used in this work.  

FACTERA processes the input in three sequential phases: identification of discordant reads, 
detection of breakpoints at base pair-resolution, and in silico validation of candidate fusions. Each 
phase is described in detail below. 
 
C2.1. Identification of discordant reads 
To iteratively reduce the sequence space for gene fusion identification, FACTERA, like other algorithms 
(e.g. BreakDancer23), identifies and classifies discordant read pairs. Such reads indicate a nearby 
fusion event since they either map to different chromosomes or are separated by an unexpectedly large 
insert size (i.e. total fragment length), as determined by the BWA mapping algorithm. The bitwise flag 
accompanying each aligned read encodes a variety of mapping characteristics (e.g., improperly paired, 
unmapped, wrong orientation, etc.) and is leveraged to rapidly filter the input for discordant pairs. The 
closest exon of each discordant read is subsequently identified, and used to cluster discordant pairs 
into distinct gene-gene groups, yielding a list of genomic regions R adjacent to candidate fusion sites. 
For each member gene of a discordant gene pair, the genomic region Ri is defined by taking the 
minimum of all 3’ exon/read coordinates in the cluster, and the maximum of all 5’ exon/read coordinates 
in the cluster. These regions are used to prioritize the search for breakpoints in the next phase. 
 
C2.2 Detection of breakpoints at base pair-resolution  
Discordant read pairs may be introduced by NGS library preparation and/or sequencing artifacts (e.g., 
jumping PCR). However, they are also likely to flank the breakpoints of bona fide fusion events. As 
such, all discordant gene pairs identified in the preceding phase are ranked in decreasing order of 
discordant read depth (duplicate fragments are eliminated to correct for possible PCR bias), and 
genomic regions with a depth of at least 2x (by default) are further evaluated for potential breakpoints. 
Within each region, FACTERA analyzes all properly paired reads in which one of the two reads is “soft-
clipped,” or truncated. Soft-clipped reads allow for precise breakpoint determination, and are easily 
identified by parsing the CIGAR string associated with each mapped read, which compactly specifies 
the alignment operation used on each base (e.g. My = y contiguous bases were mapped, Sx = x bases 
were skipped). To simplify this step, only soft-clipped reads with the following two patterns are 
considered, SxMy and MySx, and the number of skipped bases x is required to be at least 16 (≤1 in 
4.3B by random chance) to reduce the impact of non-specific sequence alignments.  

To validate potential genomic breakpoints, defined as the edges of soft-clipped reads, 
FACTERA executes the following routine. For each discordant gene pair, all candidate breakpoints are 
tabulated, and the support (i.e. read frequency) for each is determined. Breakpoints supported by less 
than 2 reads (by default) are excluded from further analysis. Starting with the two breakpoints with 
highest support, FACTERA selects a representative soft-clipped read for each breakpoint, such that the 
length of the clipped sequence is closest to half of the read length. If the mapped region of one read 
matches the soft-clipped region of the other, FACTERA records a putative fusion event. To assess 
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inter-read concordance, FACTERA employs the following algorithm. The mapped region of read 1 is 
parsed into all possible subsequences of length k (i.e., k-mers) using a sliding window (k = 10, by 
default). Each k-mer, along with its lowest sequence index in read 1, is stored in a hash table data 
structure, allowing k-mer membership to be assessed in constant time. Subsequently, the soft clipped 
sequence of read 2 is parsed into non-overlapping subsequences of length k, and the hash table is 
interrogated for matching k-mers. If a minimum matching threshold is achieved (=0.5 × the minimum 
length of the two compared subsequences), then the two reads are considered concordant. FACTERA 
will process at most 1000 (by default) putative breakpoint pairs for each discordant gene pair. 
Moreover, for each gene pair, FACTERA will only compare reads whose orientations are compatible 
with valid fusions. Such reads have soft-clipped sequences facing opposite directions. When this 
condition is not satisfied, FACTERA uses the reverse complement of read 1 for k-mer analysis.  

In some instances, genomic subsequences flanking the true breakpoint may be nearly or 
completely identical, causing the aligned portions of soft-clipped reads to overlap. Unfortunately, this 
prevents an unambiguous determination of the breakpoint. As such, FACTERA incorporates a simple 
algorithm to arbitrarily adjust the breakpoint in one read (i.e., read 2) to match the other (i.e., read 1). 
For each read, FACTERA calculates the distance between the breakpoint and the read coordinate 
corresponding to the first k-mer match between reads. For example, let x be defined as the distance 
between the breakpoint coordinate of read 1 and the index of the first matching k-mer, j, and y be 
defined as the corresponding distance for read 2. Then, the offset is estimated as the difference in 
distances (x, y) between the two reads. 
 
C2.3. In silico validation of candidate fusions 
To confirm each candidate breakpoint in silico, FACTERA performs a local realignment of reads against 
a template fusion sequence (± 500bp around the putative breakpoint) extracted from the .2bit reference 
genome. BLAST is currently employed for this purpose, although BLAT or other fast aligners could be 
substituted. A BLAST database is constructed by collecting all reads that map to each candidate fusion 
sequence, including discordant reads and soft-clipped reads, as well as all unmapped reads in the 
original input .bam file. All reads that map to a given fusion candidate with at least 95% identity and a 
minimum length of 90% of the input read length (by default) are retained, and reads that span or flank 
the breakpoint are counted. As a final step, output redundancies are minimized by removing fusion 
sequences within a 20 bp interval of any fusion sequence with greater read support and with the same 
sequence orientation (to avoid removing reciprocal fusions).  

FACTERA produces a simple output text file, which includes for each fusion sequence, the gene 
pair, the chromosomal sequence coordinates of the breakpoint, the fusion orientation (e.g., forward-
forward or forward-reverse), the genomic sequences within 50 bp of the breakpoint, and depth statistics 
for reads spanning and flanking the breakpoint. Fusions identified in patients analyzed in this work are 
provided in Supplementary Table 3. 
 
C2.4. Experimental validation of FACTERA 
To experimentally evaluate the performance of FACTERA, we generated NGS data from two NSCLC 
cell lines, HCC78 (21.5M × 100 bp paired-end reads) and NCI-H3122 (19.4M × 100 bp paired-end 
reads), each of which has a known rearrangement (ROS1 and ALK, respectively)24,25 with a breakpoint 
that has, to the best of our knowledge, not been previously published. FACTERA readily revealed 
evidence for a reciprocal SLC34A2-ROS1 translocation in the former and an EML4-ALK fusion in the 
latter. Precise breakpoints predicted by FACTERA were experimentally validated by PCR amplification 
and Sanger sequencing (Supplementary Fig. 2a; see also Validation of Variants Detected by CAPP-
Seq). Importantly, FACTERA completed each run in practical time (~90 sec), using only a single thread 
on a hexa-core 3.4 GHz Intel Xeon E5690 chip. These initial results illustrate the utility of FACTERA as 
part of the CAPP-Seq analysis pipeline. 
 
C2.5. Templated fusion discovery 
We implemented a user-directed option to “hunt” for fusions within expected candidate genes. A fusion 
could be missed by FACTERA if the fusion detection criteria employed by FACTERA are incompletely 
satisfied—such as if discordant reads, but not soft-clipped reads, are identified—and will most likely 
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occur when fusion allele frequency in the tumor is extremely low. As input, the method is supplied with 
candidate fusion gene sequences as “baits”. All unmapped and soft-clipped reads in the input .bam file 
are subsequently aligned to these templates (using blastn) to identify reads that have sufficient 
similarity to both (for each read, 95% identity, e-value < 1.0e-5, and at least 30% of the read length 
must map to the template, by default). Such reads are output as a list to the user for manual analysis.  
 We tested this simple approach on a low purity tumor sample found to harbor an ALK fusion by 
FISH, but not FACTERA (i.e., case P9). Using templates for ALK and its common fusion partner, ELM4, 
we identified 4 reads that mapped to both, in a region with an overall depth of ~1900x. The estimated 
allele frequency of 0.21% was strikingly similar to the 0.22% tumor purity measured by FACS (data not 
shown), confirming the utility of the templated fusion discovery method. We subsequently FACS-
depleted CD45+ immune populations and re-sequenced this patient’s tumor. In the enriched tumor 
sample, FACTERA identified the EML4-ALK fusion, along with two novel ROS1 fusions (Fig. 4b, 
Supplementary Table 3). 
 
C3. Mutation Recovery:SNVs/indels  
Using a custom Perl script, previously identified reporter alleles were intersected with a SAMtools 
mpileup file generated for each plasma DNA sample, and the number and frequency of supporting 
reads was calculated for each reporter allele. Only reporters in properly paired reads at positions with at 
least 500x overall depth (pre-duplication removal; see section B2.1) were considered (Supplementary 
Table 4).  
 
C4. Mutation Recovery: Fusions 
For enumeration of fusion frequency in sequenced plasma DNA, FACTERA executes the last step of 
the discovery phase (i.e., in silico validation of candidate fusions, above) using the set of previously 
identified fusion templates. The fusion allele frequency is calculated as α / β, where α	  is the number of 
breakpoint-spanning reads, and β is the mean overall depth within a genomic region ± 5bps around the 
breakpoint. Regarding the NSCLC selector described in this work, the latter calculation was always 
performed on the single gene contained in the NSCLC selector library. If both fusion genes are targeted 
within a selector library, overall depth is estimated by taking the mean depth calculated for both genes. 

Notably, in some cases we observed lower fusion allele frequencies than would be expected for 
heterozygous alleles (e.g., see cell line fusions in Supplementary Table 3). This was seen in cell lines, 
in an empirical spiking experiment, and in one patient’s tumor and plasma samples (i.e., P6), and could 
potentially result from inefficient “pull-down” of fusions whose partners are not represented in the 
selector. Regardless, fusions are useful reporters—they possess virtually no background signal and 
show linear behavior over defined concentrations in a spiking experiment (Supplementary Fig. 5d). 
Moreover, allelic frequencies in plasma are easily adjusted for such inefficiencies by dividing the 
measured frequency in plasma by the corresponding frequency in the tumor. In cases where 
sequenced tumor tissue is impure, tumor content can be estimated using the frequencies of SNVs (or 
indels) as a reference frame, allowing the fusion fraction to be normalized accordingly (Supplementary 
Table 4).  

 
C5. Screening Plasma DNA without Knowledge of Tumor DNA 
We devised the following statistical algorithm as an initial step toward non-invasive tumor genotyping 
and cancer screening with CAPP-Seq. The method identifies candidate tumor-derived SNVs using 
sequential models of (i) background noise in paired germline DNA (in this work, PBLs), (ii) base-pair 
resolution background frequencies in plasma DNA across the selector, and (iii) sequencing error in 
plasma DNA. Anecdotal examples are provided in Supplementary Fig. 7. The algorithm works in four 
main steps, detailed below. 

As input, the algorithm takes allele frequencies from a single plasma DNA sample and analyzes 
high quality background alleles, defined in a first step for each genomic position as the non-dominant 
base with highest fractional abundance, excluding germline SNPs. Only alleles with depth of at least 
500x and strand bias <90% (conservative, by default) are analyzed. For consistency with variant 
calling, we allowed the screening approach to interrogate selector regions within 500 bp of defined 
coordinates, expanding the effective sequence space from ~125 kb to ~600 kb.  
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Second, the binomial distribution is used to test whether a given non-reference allele in plasma 
DNA is significantly different from the corresponding paired germline allele  (Supplementary Fig. 
7a,b). Here the probability of success is taken to be the frequency of the background allele in PBLs, 
and the number of trials is the allele’s corresponding depth in plasma DNA.  To avoid contributions from 
alleles in rare circulating tumor cells that might contaminate PBLs, input alleles with a fractional 
abundance greater than 0.5% in paired PBLs (by default) or a Bonferroni-adjusted binomial probability 
greater than 2.08 × 10-8 are not further considered (alpha of 0.05 / [~600 kb × 4 alleles per position]). 

Third, a database of plasma DNA background allele frequencies is assembled. Here, we used 
samples analyzed in the present study (i.e., pre-treatment NSCLC samples and 1 sample from a 
healthy volunteer), except the input sample is left out to avoid bias. Based on the assumption that all 
background allele fractions follow a normal distribution, a Z-test is employed to test whether a given 
input allele differs significantly from typical circulating DNA background at the same position 
(Supplementary Fig. 7a,b). All alleles within the selector are evaluated, and those with an average 
background frequency of 5% or greater (by default) or a Bonferroni-adjusted single-tailed Z-score <5.6 
are not further considered (alpha of 0.05, adjusted as above). 

Finally, candidate alleles are tested for remaining potential sequencing errors. This step 
leverages the observation that non-tumor variants (i.e., “errors”) in plasma DNA tend to have a higher 
duplication rate than bona fide variants detectable in the patient’s tumor (data not shown). As such, the 
number of supporting reads is compared for each input allele between nondeduped (all fragments 
meeting QC critiera; see Online Methods) and deduped data (only unique fragments meeting QC 
criteria). An outlier analysis is then used to distinguish candidate tumor-derived SNVs from remaining 
background noise (Supplementary Fig. 7a–c). Specifically, to reveal outlier tendency in the data, the 
square root of the robust distance Rd (Mahalanobis distance) is compared against the square root of 
the quantiles of a chi-squared distribution Cs. By applying this transformation, we observed a natural 
separation between true SNVs and false positives in cancer patients (Supplementary Fig. 7a,c), and 
notably, an absence of outlier structure in patient samples lacking tumor-derived SNVs 
(Supplementary Fig. 7b,c). To automatically call SNVs without prior knowledge, the screening 
approach iterates through data points by decreasing Rb and recalculating the Pearson’s correlation 
coefficient Rho between Rd and Cs for points 1 to i, where Rdi is the current maximum Rd. The 
algorithm iteratively reports outliers (i.e., candidate tumor-derived SNVs) until it terminates when Rho ≥ 
0.85. 
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